

Figure 66(3). The Global Chronological Diagram and its decomposition into the sum of four chronicles. Detailed structure. Part 3

does not depend on the condition $a \in D$). Note that V(D) was especially constructed so as to fulfil the assumption; in other words, so that this set may not be "different" from D in structure.

Thus, the probability that a point from V falls into the parallelepiped Π (by construction, already containing one point a_0 ; this is an a priori condition, and we do not speak of this point any more) equals λ . Note that we assume the point under consideration to be in Π independent of a fixed point a_0 to fall into Π . Therefore, the average number of points in Π from D (irrespective of a_0) is $\lambda \cdot |D|$. If $\lambda \cdot |D|$ is small, then the probability that at least one point "independent" of a_0 is in Π equals $1-(1-\lambda)^{|D|} \simeq 1-e^{-\lambda \cdot |D|} \simeq \lambda \cdot |D|$. (For the values of λ and |D| under consideration, the exactness of this formula is very high.) Hence, if $\lambda \cdot |D|$ is a quantity of the